Overview of How DEP Evaluates/Regulates Chemicals in the Environment

Paul Locke
Director of Response & Remediation
MassDEP Bureau of Waste Site Cleanup

Standard-Setting Process

- Each law mandates a specific approach
- Typically includes some analysis of the potential risk of harm posed
- Can also include other factors...
 - Cost-Benefit Analysis
 - Risk-Balancing
 - Best Available Control Technology (BACT)
 - Negotiated Endpoints

Risk Assessment Basics

- Risk levels can be described in different ways:
 - No Risk, No Significant Risk, Acceptable Risk, Unacceptable Risk, Allowable Risk, Significant Risk, one-in-one million, 10⁻⁶, etc...
- Risk levels can be calculated or estimated.
 When DEP calculates risk, we are intentionally "conservative" we intentionally overestimate the risk to be health protective.
- Risk estimates should always be prefaced by "The estimated risk may be as high as X, but is likely to be much lower." (Usually it is just implied.)

Risk Assessment Basics

Risk ≈ Exposure x Toxicity

The more contact (exposure) you have with a chemical, the greater the potential risk.

The more harmful (toxic) the chemical, the greater the potential risk.

Exposure Basics

- "Exposure Assumptions" describe the contact with contamination, such as the amount of...
 - Water you drink
 - Air you breathe
 - Soil you eat
- Exposure assumptions include receptor details, such as body weight and age.
- Exposure assumptions also include the concentration in soil, water, air, etc.

Toxicity Basics

- Look at <u>both</u> cancer and non-cancer effects
- Information comes from laboratory studies in animals and from human epidemiological studies.
- "Sensitive Sub-populations" are also considered
- Chemical-specific toxicity values are published
 - Cancer slope factor (or unit risk) for carcinogens
 - Reference Concentrations for non-cancer effects

In Summary...

An allowable level (in soil, water, air...) is typically determined considering the potential risk posed by exposure to the substance, using health-protective assumptions about the exposure and toxicity.

The level may also be adjusted based on other considerations, such as background levels, feasibility issues, technological factors, riskbalancing, etc...